898 research outputs found

    Recurrent Neural Network Training with Dark Knowledge Transfer

    Full text link
    Recurrent neural networks (RNNs), particularly long short-term memory (LSTM), have gained much attention in automatic speech recognition (ASR). Although some successful stories have been reported, training RNNs remains highly challenging, especially with limited training data. Recent research found that a well-trained model can be used as a teacher to train other child models, by using the predictions generated by the teacher model as supervision. This knowledge transfer learning has been employed to train simple neural nets with a complex one, so that the final performance can reach a level that is infeasible to obtain by regular training. In this paper, we employ the knowledge transfer learning approach to train RNNs (precisely LSTM) using a deep neural network (DNN) model as the teacher. This is different from most of the existing research on knowledge transfer learning, since the teacher (DNN) is assumed to be weaker than the child (RNN); however, our experiments on an ASR task showed that it works fairly well: without applying any tricks on the learning scheme, this approach can train RNNs successfully even with limited training data.Comment: ICASSP 201

    Modelling trust evolution within small business lending relationships

    Get PDF
    Trust is a key dimension in the principal-agent relationship and it has been studied extensively. However, the dynamics, evolution, and intrinsic motivation and mechanisms have received less attention. This paper investigates the intrinsic motivation of trust and it proposes a theoretical model of trust evolution that is based on the notion of ‘trust response’ and ‘trust spiral’. We then specifically focus on trust within the lending relationship between banks and small businesses, and we run numerical simulations to further illustrate the evolution of involved mutual trust over time. Our model provides implications for future research in both trust evolution and small business lending relationships

    Efficient and Interpretable Compressive Text Summarisation with Unsupervised Dual-Agent Reinforcement Learning

    Full text link
    Recently, compressive text summarisation offers a balance between the conciseness issue of extractive summarisation and the factual hallucination issue of abstractive summarisation. However, most existing compressive summarisation methods are supervised, relying on the expensive effort of creating a new training dataset with corresponding compressive summaries. In this paper, we propose an efficient and interpretable compressive summarisation method that utilises unsupervised dual-agent reinforcement learning to optimise a summary's semantic coverage and fluency by simulating human judgment on summarisation quality. Our model consists of an extractor agent and a compressor agent, and both agents have a multi-head attentional pointer-based structure. The extractor agent first chooses salient sentences from a document, and then the compressor agent compresses these extracted sentences by selecting salient words to form a summary without using reference summaries to compute the summary reward. To our best knowledge, this is the first work on unsupervised compressive summarisation. Experimental results on three widely used datasets (e.g., Newsroom, CNN/DM, and XSum) show that our model achieves promising performance and a significant improvement on Newsroom in terms of the ROUGE metric, as well as interpretability of semantic coverage of summarisation results.Comment: The 4th Workshop on Simple and Efficient Natural Language Processing (SustaiNLP 2023), co-located with ACL 202

    RGB-D-based Stair Detection using Deep Learning for Autonomous Stair Climbing

    Full text link
    Stairs are common building structures in urban environments, and stair detection is an important part of environment perception for autonomous mobile robots. Most existing algorithms have difficulty combining the visual information from binocular sensors effectively and ensuring reliable detection at night and in the case of extremely fuzzy visual clues. To solve these problems, we propose a neural network architecture with RGB and depth map inputs. Specifically, we design a selective module, which can make the network learn the complementary relationship between the RGB map and the depth map and effectively combine the information from the RGB map and the depth map in different scenes. In addition, we design a line clustering algorithm for the postprocessing of detection results, which can make full use of the detection results to obtain the geometric stair parameters. Experiments on our dataset show that our method can achieve better accuracy and recall compared with existing state-of-the-art deep learning methods, which are 5.64% and 7.97%, respectively, and our method also has extremely fast detection speed. A lightweight version can achieve 300 + frames per second with the same resolution, which can meet the needs of most real-time detection scenes

    Approaching quantum anomalous Hall effect in proximity-coupled YIG/graphene/h-BN sandwich structure

    Full text link
    Quantum anomalous Hall state is expected to emerge in Dirac electron systems such as graphene under both sufficiently strong exchange and spin-orbit interactions. In pristine graphene, neither interaction exists; however, both interactions can be acquired by coupling graphene to a magnetic insulator (MI) as revealed by the anomalous Hall effect. Here, we show enhanced magnetic proximity coupling by sandwiching graphene between a ferrimagnetic insulator yttrium iron garnet (YIG) and hexagonal-boron nitride (h-BN) which also serves as a top gate dielectric. By sweeping the top-gate voltage, we observe Fermi level-dependent anomalous Hall conductance. As the Dirac point is approached from both electron and hole sides, the anomalous Hall conductance reaches 1/4 of the quantum anomalous Hall conductance 2e2/h. The exchange coupling strength is determined to be as high as 27 meV from the transition temperature of the induced magnetic phase. YIG/graphene/h-BN is an excellent heterostructure for demonstrating proximity-induced interactions in two-dimensional electron systems
    corecore